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The effect of the transverse temperature gradient on the stability of steady motion of a vis- 
cous incompressible liquid in a plane vertical layer bounded by two infinite solid surfaces is 
studied. The motion of the liquid is caused by sedimentation of heavy solid spherical particles 
distributed nonuniformly across the layer and by the horizontal temperature gradient. Spec- 
tra of decrements of small normal perturbations are calculated for different particle sizes and 
different degrees of nonuniformity of the distribution of admixture particles. The stability of 
a steady flow of the liquid with an admixture decreases with increasing temperature gradient 
and increasing particle radius and increases with a tendency of the particles to a uniform 
distribution. 

The stability of an isothermal plane-parallel  flow of a viscous incompressible liquid (gas) with a small 
number of heavy solid spherical particles distr ibuted nonuniformly in the flow was studied in [1], where the 
dependence of flow stability on the character  of the distribution of particles in the layer was shown. The 
effect of the sedimentat ion rate of the particles, their size, density, heat capacity, and mass concentration on 
the convective stabil i ty of a steady flow of a liquid with a uniformly distr ibuted admixture was considered 

in [2]. 
Below we s tudy  the effect of the transverse temperature gradient on the stability of a steady motion 

of a viscous incompressible liquid in a vertical plane layer bounded by two infinite solid plane surfaces. The 
motion of the liquid is caused by sedimentation of solid spherical particles distr ibuted nonuniformly across 
the layer and by the temperature difference on the boundaries of the layer. 

1. We consider a viscous incompressible liquid containing an admixture of heavy solid particles. The 
liquid and admixture  are assumed to be continuum media penetrating into each other and interacting with 
each other; the interact ion between the particles is ignored. The interaction between the phases during their 
relative motion obeys the Stokes law. The volume fraction of particles is so small that  the Einstein's correction 
to the liquid viscosity may  be ignored. The  particles are assumed to be spherical and nondeformable and to 
have an identical mass m and an identical radius r; the particle density Pl is much greater than the liquid 

density P0. 
First we consider a uniformly heated layer of the liquid. Descending particles move in the liquid in 

a closed vertical layer between the planes x = +h.  These particles are symmetrically distributed across the 

layer with respect to the vertical axis z in accordance with the law (see [1]) 

4 cosh a cosh (ax/h)  - cosh (2ax/h) - cosh 2a  - 2 
No (x, a) = 4 cosh a - cosh 2a - 3 ' 

where No is the number  of particles per unit volume and a is a coefficient tha t  determines the admLxture 
concentration near  the layer boundaries (the solid curves 1 and 2 in Fig. 1 refer to a = 1 and 40, respectively). 

Chelyabinsk Sta te  University, Chelyabinsk 454021. Translated from Prikladnaya Mekhanika i Tekhnich- 
eskaya Fizika, Vol. 41, No. 5, pp. 180-187, September-October,  2000. Original article submitted December 
22, 1998; revision submit ted  February 8, 2000. 

0021-8944/00/4105-0923 $25.00 (~) 2000 Kluwer Academic/Plenum Publishers 923 



1.0 

0.5 

0 

-0.5 -1 

~0 
850 

I 
425 

t r " - ~  0 

-425 
0 1 x 

Fig. 1 

This formula gives a good description of the distribution of the settling particles in the vertical layer, which 
is observed in the experiment [3]. 

Interacting with the liquid, the settling particles distributed nonuniformly across the layer set the liquid 
into motion. Steady distributions of the liquid and particle velocities in the isothermal case are found from a 
system of equations tha t  describe the behavior of an incompressible liquid with an admixture of heavy solid 
particles (see [1]) under the assumption that  the trajectories of both liquid and solid particles are straight 
lines parallel to the vertical axis z and the layer is closed from below and from above at infinity: 

(4 cosh a cosh (ax)a2 - cosh (2ax)/4 + B2x ~ - 83 _), Ga Bx ?A0 

7 4), mh3 B2 = sinh 2a  ~ cosh 2a - 
B1 = p(4 cosh a - c o s h  2a - 3) '  4a 2 \ 4 a  - 

(1.1) 

45 7 1 
B3 = ~ sinh 2a - ~ cosh 2a a2, upo = uo + Us, us = - G a r v .  

Dimensionless variables are introduced here; the units of distance, time, velocity, and pressure are h, h2/~, 
r /h ,  and pov2/h 2, respectively, r,  = 2r2pl/(9h2po) is the dimensionless t ime during which the particle velocity 
relative to the liquid decreases by a factor of e as compared to the initial value, Ga = gha/L ,2 is the Galileo 
number, y is the kinematic viscosity, and m is the particle mass; the quantities with the subscript p refer to 
the cloud of particles, us is the particle-sedimentation rate, and g is the acceleration of gravity. 

Under the action of settling particles, the motion of the liquid is symmetric relative to the channel 
axis and has two ascending and one descending flows (1.1) [see Fig. 1, where the solid and dashed curves 
correspond to No(x)  and u0(x), respectively]. The intensity of motion rapidly decreases with increasing a 
(as a ~ c~, i.e., with a tendency of the particles to a uniform distribution, we have u0 --* 0). 

We s tudy the stability of the exact solution of system (1.1) for the motion of a liquid with nonuniformly 
distributed heavy particles of the admixture. Small perturbations of a s teady plane-parallel flow (1) are 
assumed to be plane, since the most dangerous disturbances from the viewpoint of origination of instability are 
two-dimensional ones, as in the case of a pure liquid [4]. We define the stream function of plane perturbations 
r by the relations 

0~ 0~ 
v =  = - 0 z '  Vz  = 

Here r  z, t) = ~(x)  exp [ik(z-ct)] ,  up(x,  z, t) = vp(x)  exp [ik(z-ct)]  are velocity perturbations of the cloud 
of particles, k is the real wavenumber, and c = cr + ic/ is the complex phase velocity of the perturbations. 
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The equations in dimensionless variables for the amplitudes of perturbations of the stream function ~ have 
the following form: 

ao ( v ~  - ikvpx) + a'~ (Vpz - r - Gaa' = 0, (1.2) 
Tv ~'v 

i k ~  - ~ '  + uNvvvpx ikvpzgo + N~vpx + Nov';= 
= ik -v(u o - c) + 1' Vpz = ik -v( ,po - e) + 1 '  = ik(u  - c) 

Here ao = Norn/po; the prime denotes differentiation with respect to the x coordinate. 
The condition of adhesion is posed on the solid plane surfaces bounding the liquid layer: 

= ~ ' = 0  for x = •  (1.3) 

The boundary-value problem (1.2), (1.3) determines the spectrum of characteristic perturbations and 
their decrements c4; the boundaries of stability are found from the condition c4 -- 0. 

In the limiting cases (large viscosity or density of the carrier liquid, small size or density of the particle 
material), the particle-sedimentation rate may be ignored. Hence, the motion of the liquid does not arise in 
these cases, and hydrodynamic perturbations decay monotonically (the quiescent state of the liquid with an 
admixture is stable). 

For arbitrary values of the parameters of the problem, the study of the spectrum of small normal 
perturbations of a steady flow (1.1) and its linear stability reduces to the numerical solution of the spectral 
amplitude problem (1.2), (1.3). Two linearly independent solutions of Eq. (1.2) can be constructed using 
the condition x -- -1  at the left point of the integration domain. Using these particular solutions, we 
can construct the general solution, which satisfies the boundary conditions for velocity perturbations for 
x -- 1. From this we obtain a system of two homogeneous algebraic equations for the coefficients of the 
general solution. The conditions of existence of a nontrivial solution of this system defines the characteristic 
equation, which determines the spectrum of the complex eigenvatues of c. The characteristic equation is 
solved by Newton's iterative method (the relative error was chosen to be 0.001). 

For direct numerical integration, Eq. (1.2) was written in the form of a system of four ordinary differen- 
tial equations of the first order. Their step-by-step integration was performed by the Runge-Kutta-Merson, 
which allows integration with an automatic choice of the step under a controlled accuracy (the error was 0.01% 
of the greatest particular solution at this step). The numerical solution involved difficulties caused by the 
presence of the small parameter Ga -1 ~ 10 -4 at the highest derivative. Rapidly increasing oscillating solu- 
tions appeared. The boundary conditions (1.3) provide the linear independence of particular solutions of (1.2) 
only at the initial section of integration. Afterwards, because of the rapidly increasing solution and rounding 
errors, the linear independence of particular solutions is lost: they become close irrespective of" the condi- 
tions at the initial boundary of numerical integration. For this reason, the problem to be solved is ill-posed, 
and the characteristic decrements cannot be determined. To recover the linear independence of particular 
solutions, the method of orthogonalization [5] was used. At each step of integration, the vector-solutions 
were orthonormalized to the vector-solution that had the maximum absolute value (at this step) using the 
Gram-Schmidt procedure. Linear transformations used in orthogonalization do not alter the eigenvalues of 

the spectral problem. 
The presence of admixture particles affects, first of all, the spectrum of perturbation decrements. In 

contrast to the spectrum of the pure liquid [4], the spectrum of perturbations here is considerably wider due 
to the appearance of perturbations related to the cloud of particles. Vibrational perturbations appear in the 
layer (see [1]). It should be noted that the stability of the liquid layer flow with nonuniformly distributed 
heavy solid particles of an admixture is caused by interaction of counterflows: the descending central flow and 
two ascending flows near the walls. The instability of motion is caused by the lower modes of hydrodynamic 
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perturbations, and the decrements of normal perturbations are complex. The settling particles give birth to 
vibrational (travelling) perturbations. 

The calculations show that the flow intensity increases and its stability decreases with increasing 
particle radius r. Curve 1 in Fig. 2 shows the dependence log G a i n  (Gamin is the minimum critical Galileo 
number above which the motion is unsteady) on the particle radius r for a = 10 and Pz/Po = 500 (this ratio 
of Pz/Po corresponds to sedimentation of sawdust in air). With increasing parameter a, the flow stability 
increases, since its intensity decreases (curve 2 in Fig. 2, r = 0.05). Figure 3 shows the minimum critical radius 
of the particles rmin and (1/a)min on Ga (curves 1 and 2, respectively). For r > train, the motion becomes 
unsteady. The characteristic of the isothermal flow (1/a)min determines its intensity. The parameter 1/a 
determines the influence of particle distribution across the vertical layer on the stability of the isothermal 
motion of the liquid, which is caused by nonuniformly distributed settling particles. An increase in the 
parameter 1/~ corresponds to an increase in the velocity of steady motion of the liquid due to the increase 
in inhomogeneity of distribution of particles, which concentrate in the middle of the layer (solid curve 1 in 
Fig. 1). Thus, we can affect the flow stability without changing the parameters of the particles and carrier 
liquid only by changing the concentration of admixture particles across the layer. 

It follows from Fig. 3 that the stability decreases with decreasing viscosity (increasing Ga). The 
phase velocity of hydrodynamic perturbations cr decreases with increasing Ga (a = const) and increases for 
r = const, which agrees with the results reported in [6]. 

2. We consider the motion of a nonuniformly heated liquid with an admixture. The equations of free 
convection of an incompressible liquid with an admixture of heavy solid particles, which develops on the 
background of a steady isothermal flow, have the following form in the Boussinesq approximation (see [4]) 
when written in the dimensionless form: 

O---u-u + (1 + ao) GrT~', & + ((uo + u) )(uo + u) = - V p  + A u  + ao(up - u) 
Vv 

O'Up 
a t  + ((up0 + u p ) v ) ( u p 0  + up)  = up - u Vv 

OT A T  aob(Tp - T) OTp Tp - T 
O-"-t + ( u ~  Pr + ' : - -  

ON V(N(up0 + up) + "V0up) 
div u = 0, 0t + Pr = 0, 

v t=3Prvvb /2 ,  b=C1/C,  P r = ~ ' / X ,  G r = g ~ O h 3 / u  2. 

Here u is the velocity of a convective flow arising on the background of steady isothermal motion with a 
velocity u0, T is the temperature, p is the pressure of the liquid counted from the overnormalized hydrostatic 
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pressure due to the presence of settling particles, C is the heat capacity of the liquid at constant pressure, 
/3 and X are the coefficient of volume expansion of the liquid and its temperature  diffusivity, C1 is the heat 
capacity of the particle material, the characteristic tempera ture  is the half-difference of temperatures at  the 
boundaries of the layer O, Tt is the dimensionless t ime needed for the tempera ture  difference between the 
liquid and particles to decrease by a factor of e as compared to the initial value, P r  and Gr are the Prand t l  
and Grashof numbers, and ~, is the unit vector directed vertically upward. 

We find the exact s teady solution of system (2.1) in the presence of a constant  horizontal t empera ture  
gradient when a convective flow caused by the nonuniform distribution of the liquid temperature is super- 
imposed on the steady motion of the liquid u0 caused by interaction with nonuniformly distributed settl ing 
solid particles. Using the conditions of adhesion of the liquid to the solid boundaries of the layer and the flow 
closure, we obtain the expression for the steady velocity of the liquid: 

where 

{~ m [4cosh~ (xcosh(~x) 2 s i ~ ( ~ x ) )  
U0 = Or + . p 0 ( 4 c o s h a - - c o s h 2 a  - 3) L a 2 a 

1 (xcosh(2ax) sinh (2ax)) 
4a  2 ~ / 

Upo = Uo + u~, 

1 
C~ " 

c o s h 2 ~  + 2 
x3j 1 + C l x  ~. ~ + uo, 

6 

To = Tp0 = - x ,  

m 

6 2p0 (4 cosh a - cosh 2a - 3) 

(2.2) 

r cos o(cos o 2sin  o  1(co  2 ~ sinh o  
X L ~  ~ . - E ~  -~ 5- , 3 " 

Under the action of settling particles and the horizontal temperature gradient, an asymmetric flow 
of the liquid with two ascending and one descending flows is formed in the layer. The intensity of motion 
decreases with increasing a .  Curves 1 and 2 in Fig. 4 correspond to a = 1 and 40, respectively. In the 
limiting case of uniformly distributed particles (a ~ c~, i.e., No = const and a0 -- const), we obtain from 
formulas (2.2) that  the isothermal component of velocity is u0 = 0, and the convective component is a usual 

cubic profile (see [2, 4]). 
3. To s tudy the stability of motion of a nonuniformly heated medium containing nonuniformly dis- 

t r ibuted settling particles, we consider the disturbed fields of velocity, temperature,  pressure, and the number  

of particles per unit volume: U0 + v, Up0 + vp, To + T, Tpo + Tp, P0 +P ,  and No + N,  where v, vp, T,  Tp, p, 
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and N are small perturbations. The equations for perturbations can be derived from (1.1) using linearization 
over the perturbations. 

As in the cases of a pure liquid [7] and a liquid with a uniformly distributed admixture [2, 8], we can show 
for a mixture with a nonuniformly distributed admixture of heavy solid particles that the problem of stability 
of convective flow to spatial perturbations reduces to the corresponding problem for plane perturbations. 
In the case of the vertical orientation of the layer, plane perturbations are more dangerous, i.e., they lead 
to instability more rapidly than spatial perturbations (with lower values of the critical Galileo and Grashof 
numbers). Hence, in stability studies, we may confine ourselves to plane perturbations. 

We consider plane normal perturbations 

vz = - -  ~b(x, z, t) -- ~(x) exp [ik(z - ct)], v~ = Oz ' Ox ' 
(3.1) 

T ( x ,  z,  t) = O(x) exp [ik(z - ct)], Y ( x ,  z, t) = n(x)  exp [ik(z - ct)], 

where ~p is the stream function and ~, 8, and n are the perturbation amplitudes. 
As a result, we obtain dimensionless equations for perturbation amplitudes from (2.1) in the linear 

approximation, taking into account (3.1): 

a0 1 § § 

+ a'o ' _ l)  +  (ikv;, +_Z(aoV;o + 
r .  / 

+ (1 + ao) Gr0' + a ' G r T  + a G r T '  + a' o GrO = 0, (3.2) 

P--~l (ot' - k20) + o (a~  vt (\-B - 1/~ + i k ( c -  Uo)) + i k ~ T ' (  a~ + 1 ) =  0. 

Here g = ikvv(Upo - c) + 1, B = ikrt(Upo - c) + 1, and n = v v / ( d  - 1)(2Nok2vvU~o~/A 2 + N ~ i k ~ / A ) .  
The boundary conditions have the form 

= ~ ' = 0 = 0  for x = + l .  (3.3) 

The boundary-value problem (3.2), (3.3) determines the spectrum of perturbation decrements and the 
boundaries of stability (c/ = 0) of motion of a nonuniformly heated liquid containing admixture particles 
distributed nonuniformly across the layer. To solve this boundary-value problem, we also used the Runge- 
Kutta-Merson method with step-by-step integration with the Gram-Schmidt orthogonalization of solutions 
at each step of integration. 

4. The presence of admixture particles changes the spectra of the decrements of hydrodynamic and 
thermal perturbations: vibrational perturbations appear, which are related to the cloud of particles. The 
instability of the flow of a nonuniformly heated layer of a liquid with nonuniformly distributed heavy solid 
particles of an admixture is caused by interaction of counterflows. The instability of motion is caused by 
the lower modes of hydrodynamic perturbations, and the decrements of thermal perturbations are negative. 
Obviously, this is related to the prevalence of the isothermal component in the steady flow examined for 
stability. The decrements of normal perturbations are complex. The settling particles generate vibrational 
perturbations and favor their transport. 

We consider the results of investigation of the effect of convection on stability of steady motion of the 
liquid, which is caused by sedimentation of heavy solid particles of the admixture distributed nonuniformly 
across the vertical layer. For the parameters of the carrier medium and admixture chosen in the present 
work, the steady convective flow is a small addition to the steady isothermal motion (the maximum velocity 
of the isothermal flow is more than ten times greater than the maximum velocity of the convective flow). In 
the case considered, the hydrodynamic modes of the spectra of perturbation decrements (Pr = 0.73) almost 
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coincide with the spectra obtained in the isothermal case, and it is hydrodynamic perturbations that disturb 
the stability. With increasing Gr, the convective velocity increases, and the flow stability decreases. Curve 1 
in Fig. 5 shows the dependence of the minimum critical Galileo number on the Grashof number (pl/po = 500, 
a = 10, Pr = 0.73, r = 0.05, and b = 2.7, which corresponds to saw-dust in air). With increasing Gr, the 
critical Galileo number decreases, and the phase velocity of perturbations increases. This is also observed 
with increasing radius of admixture particles: with increasing particle radius from 0.015 to 0.05, the value 
of Gamin decreases almost by a factor of 70. With increasing parameter a, the intensity of the isothermal 
component of the flow decreases, and the flow stability increases (curve 2 in Fig. 5). 

A comparison of the data obtained in Sec. 3 with the results reported in [1] and Sec. 1 of the present 
work shows that the effect of weak convection on the stability of an isothermal flow of a liquid caused by 
sedimentation of nonuniformly distributed heavy particles is insignificant (the threshold of stability decreases 
by approximately 5-7%). The stability of a flow of a nonuniformly heated liquid with an admixture increases 
significantly with increasing parameter a, which characterizes the degree of uniformity of particle distribution 
across the layer, approaching the stability of a liquid flow with a uniformly distributed admixture (see [2]). 
The growth in particle sizes leads to a significant decrease in the stability of motion. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 

01684). 
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